Engineering solutions to the plastic waste challenge

When people ask me what I do, I usually give the easy answer: “I’m an engineer.” What that really means is my work is about finding solutions. We engineers use our technical expertise to enhance products and processes, develop novel technologies and try to find solutions to complex challenges.

Perspective Dec. 14, 2020

Engineering solutions to the plastic waste challenge

The challenge of plastic waste is a perfect example.

Plastic pollution and the plastic lifecycle

Plastics improve everyday life in myriad ways. From simple cables to smartphones to household appliances, most of the items we use daily rely on innovative plastics. Or take modern sports as an example. Athletic shoes, clothing and safety equipment all rely on plastics. Even the track on which an Olympic runner pursues a new record is typically made with plastic as a key component. Along with helping make life more enjoyable and exciting, plastics also save lives.

Plastics are critical components of many lifesaving products in the medical industry, including face masks, shields and gowns for medical professionals treating patients with COVID-19 and a wide array of other conditions. Every hospital visit – short or extended, amid or beyond the global pandemic – involves the use of protective products and equipment comprised of plastics. All that plastic, however, needs to be properly disposed of.

A significant amount of solid waste – including but not limited to plastic – leaks into the environment every day. And the problem is exacerbated in the developing world, where at least 3 billion people lack access to controlled waste-disposal facilities. Plastic’s full potential cannot be leveraged if it ends up in the oceans.

I share society’s concern about plastic pollution in the environment – and this is where we engineers come in. Our job is to find value in plastics throughout their life cycle, including at their end of life. We use our technical expertise, our creative application of scientific principles, and new technologies to try to capture the full value of plastics so they’re viewed more as treasure than trash.

Providing a valuable outlet for capturing plastic waste is a way to incentivize its collection and sorting, and science is required to maximize that value. I’m talking about advanced recycling technologies that break down plastic waste to its molecular building blocks and recombines them so recycled plastic becomes equivalent to new plastic.

But engineering is more than just developing technologies to increase plastics recyclability. It’s about applying the technologies and advocating plastic pollution solutions, as ExxonMobil is doing, in uniquely challenging places.

Plastic waste solutions in Atando Cabos

In the Patagonia region of Chile, discarded plastic fishing ropes were contaminating beaches. Several groups came together and launched the Atando Cabos project with a simple goal: Collect the ropes and recycle them into high-quality products. But that’s harder than it sounds. The clean-up crews discovered the ropes were made of two incompatible materials that wouldn’t mix and couldn’t be separated. That’s when ExxonMobil stepped in.

We collaborated with Atando Cabos and found that adding our Vistamaxx™ performance polymers to the ropes’ two materials made them compatible and fully recyclable. Now, discarded ropes are being turned into sturdy end products, such as crates used for agricultural purposes. In just one year, more than 1,000 tons of rope have been recycled through this partnership.

The Alliance to End Plastic Waste

ExxonMobil is a founding member of the Alliance to End Plastic Waste, which is focused on developing safe, scalable and economically viable solutions that will help end plastic waste in the environment. The Alliance aims to accelerate additional investment by proving the effectiveness of these plastic pollution solutions, particularly in markets with the highest levels of plastic waste.

Among its many initiatives, the Alliance is providing funding to Project STOP Jembrana, a group helping communities in Bali to prevent 2,200 tons of plastic waste leaking into the environment each year, while collecting and processing an additional 18,000 tons of waste annually. Another project, Closing the Loop, helps Ghanaian communities collect and sell plastic waste, which is then reused to create household products and building materials.

The Alliance’s membership has grown to include nearly 50 organizations from all over the world, representing the chemical industry, waste management companies and consumer brands. Have a look at the other great projects the Alliance is working on here.

Working together to reduce plastic waste

More than just acknowledging the challenge of plastic waste in the environment, we at ExxonMobil are taking actions to help address it by increasing plastic recyclability, supporting improvements in plastic waste recovery and working on technological solutions. For us, a company of engineers and scientists, this means providing practical solutions and using our technical expertise and experience – something we have been doing successfully for more than 135 years.

We can’t go it alone, though. It is essential for industry, governments, consumers and others to work collaboratively to ensure the appropriate collection, sorting, recycling and recovery of plastic pollution. Every partner within the plastics value chain will need to focus on what they do best.

I’m convinced that if we all work together, we can continue to enjoy the benefits of plastics – from our leisure pursuits to our safety and health – while preventing leakage of plastic waste into the environment.

Explore more

Dr. Vijay Swarup headshot

Solving the dual challenge: It takes patience and passion

ExxonMobil’s role in helping society meet the dual challenge is to supply the affordable and reliable energy the world needs while reducing environmental impacts. Doing that takes long-term research and a dedication to turning promising innovations into scalable solutions.

Energy and innovation Perspective July 23, 2020

Pioneers of innovation: The battery that changed the world

Pioneers of innovation: The battery that changed the world

If you are reading this on a phone, tablet or laptop, you should probably thank Dr. M. Stanley Whittingham. In the 1970s Dr. Whittingham was working at ExxonMobil’s Clinton, New Jersey, corporate research lab when he created the very first examples of a radical new technology: the rechargeable lithium-ion battery.

Energy and innovation Perspective Oct. 10, 2019

Researching solutions for lower emissions

Researching solutions for lower emissions

With more than 20,000 scientists and engineers around the world, ExxonMobil is a leader in energy innovation.

Energy and innovation Energy Factor Sept. 23, 2019

Tools of the future for today's energy workers

Tools of the future for today's energy workers

These days, mind-bending new technologies aren’t just revolutionizing Silicon Valley. Inventors are working to get these tools into the hands of technicians at refineries on the Gulf Coast and operators in the Permian Basin.

Energy and innovation Energy Factor June 18, 2019

Innovation finds a home in the digital garage

Innovation finds a home in the digital garage

From search engine giants to sophisticated computer manufacturers, some of the biggest names in the tech industry are known for their humble beginnings – a makeshift workspace in a garage. And, some of ExxonMobil’s greatest emerging technologies also start in its “digital garage,” though the workspace there is cutting-edge, rather than makeshift.

Energy and innovation Energy Factor Feb. 27, 2019

A quantum leap in supplying tomorrow's energy

A quantum leap in supplying tomorrow's energy

Discovering tomorrow’s energy on a global scale relies on pushing fundamental science at the micro-level, and new technologies are constantly improving that search for true understanding.

Energy and innovation Energy Factor Jan. 11, 2019